2.6 Evaluation Of Logic Expression With The Use Of Truth Table

Boolean or logical expression can be simply evaluated using a truth table or table of combinations of the variables representing the relationship of all possible values that the variables may take and result of the operation.

 

Part 2.6.1 Truth Table

 

A truth table is a tabular representation of a Boolean function. It provides a clear and concise way to visualize the relationship between the input values and the corresponding output value of a Boolean expression. Each row in a truth table represents a unique combination of input values, while each column represents an input variable or the output of the function. The values in the table are typically 0 or 1, representing the logical values "false" and "true," respectively. Truth tables are essential for understanding Boolean functions, verifying the correctness of Boolean expressions, and designing digital circuits.

 

Part 2.6.2 How we Draw a Truth Table

 

This is the step by step procedure how we draw a truth table.

 

Step No. 1: Know the number of input. The use the formula below to know the number of combination you need to do.

Number of combination = 2n

 

Step No. 2 Draw the row of input, output and combination.

 

Step No. 3 Draw the combinations. Use the pattern.

 

Example no 1.

Draw a truth table with 3 input and 1 output variable.

 

Solution:

Step No. 1: Know the number of input. The use the formula below to know the number of combination you need to do.

Number of combination = 2n

Number of combination = 23

Number of combination = 8

 

Step No. 2 Draw the row of input, output and combination.

 

Input

Output

X

Y

Z

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step No. 3 Draw the combinations. Use the pattern.

 

Input

Output

X

Y

Z

F

0

0

0

 

0

0

1

 

0

1

0

 

0

1

1

 

1

0

0

 

1

0

1

 

1

1

0

 

1

1

1

 

 

And here is our truth table. 

 

Example no 2.

Draw a truth table with 4 input and 1 output variable.

 

Solution:

Step No. 1: Know the number of input. The use the formula below to know the number of combination you need to do.

Number of combination = 2n

Number of combination = 24

Number of combination = 16

 

Step No. 2 Draw the row of input, output and combination.

 

Input

Output

w

x

y

z

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step No. 3 Draw the combinations. Use the pattern.

 

Input

Output

w

x

y

z

F

0

0

0

0

 

0

0

0

1

 

0

0

1

0

 

0

0

1

1

 

0

1

0

0

 

0

1

0

1

 

0

1

1

0

 

0

1

1

1

 

1

0

0

0

 

1

0

0

1

 

1

0

1

0

 

1

0

1

1

 

1

1

0

0

 

1

1

0

1

 

1

1

1

0

 

1

1

1

1

 

 

And here is our truth table.

 

 

Part 2.6.3 Conversion from Boolean Expression to Truth Table.

 

This is the step by step procedure how we convert Boolean expression to truth table.

Step No. 1: Know the number of input variables. The use the formula below to know the number of combination you need to do.

Number of combination = 2n

Step No. 2 Draw the row of input, output and combination.

Step No. 3 Draw the combinations. Use the pattern.

Step No. 4 Evaluate each term of the expression.

 

Example No 3.

 

Convert F=ABC+BC’+AC’ to truth table

 

Solution:

Step No. 1: Know the number of input variables. The use the formula below to know the number of combination you need to do.

Number of combination = 2n

Number of combination = 23

Number of combination = 8

 

Step No. 2 Draw the row of input, output and combination.

 

Input

Output

A

B

C

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step No. 3 Draw the combinations. Use the pattern.

 

Input

Output

A

B

C

F

0

0

0

 

0

0

1

 

0

1

0

 

0

1

1

 

1

0

0

 

1

0

1

 

1

1

0

 

1

1

1

 

 

Step No. 4 Evaluate each term of the expression.

 

Step No. 4.1

F=ABC+BC’+AC’

Input

Output

A

B

C

C’

0

0

0

1

0

0

1

0

0

1

0

1

0

1

1

0

1

0

0

1

1

0

1

0

1

1

0

1

1

1

1

0

 

Step No. 4.2

F=ABC+BC’+AC’

Input

Output

A

B

C

C’

ABC

0

0

0

1

0

0

0

1

0

0

0

1

0

1

0

0

1

1

0

0

1

0

0

1

0

1

0

1

0

0

1

1

0

1

0

1

1

1

0

1

 

Step No. 4.3

F=ABC+BC’+AC’

Input

Output

A

B

C

C’

ABC

BC’

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

1

0

1

0

1

1

0

0

0

1

0

0

1

0

0

1

0

1

0

0

0

1

1

0

1

0

1

1

1

1

0

1

0

 

Step No. 4.4

F=ABC+BC’+AC’

Input

Output

A

B

C

C’

ABC

BC’

AC’

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

1

0

1

0

0

1

1

0

0

0

0

1

0

0

1

0

0

1

1

0

1

0

0

0

0

1

1

0

1

0

1

1

1

1

1

0

1

0

0

 

 

Step No. 4.4

F=ABC+BC’+AC’

Input

Output

A

B

C

C’

ABC

BC’

AC’

ABC+BC’+AC’

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

1

0

1

0

1

0

1

1

0

0

0

0

0

1

0

0

1

0

0

1

1

1

0

1

0

0

0

0

0

1

1

0

1

0

1

1

1

1

1

1

0

1

0

0

1

 

 

Step No. 4.5

Our Final truth table is:

F=ABC+BC’+AC’

Input

Output

A

B

C

F

0

0

0

0

0

0

1

0

0

1

0

1

0

1

1

0

1

0

0

1

1

0

1

0

1

1

0

1

1

1

1

1